Control of stability of polypeptide multilayer nanofilms by quantitative control of disulfide bond formation
نویسندگان
چکیده
The crosslinking of polymers in a polymeric material will alter the mechanical properties of the material. Control over the mechanical properties of polyelectrolyte multilayer films (PEMs) could be useful for applications of the technology in medicine and other areas. Disulfide bonds are ‘natural’ polypeptide crosslinks found widely in wild-type proteins. Here, we have designed and synthesized three pairs of oppositely charged 32mer polypeptide to have 0, 4, or 8 cysteine (Cys) residues per molecule, and we have characterized physical properties of the peptides in a PEM context. The average linear density of free thiol in the designed peptides was 0, 0.125, or 0.25 per amino acid residue. The peptides were used to make 10-bilayer PEMs by electrostatic layer-by-layer self-assembly (LBL). Cys was included in the peptides to study specific effects of disulfide bond formation on PEM properties. Features of film assembly have been found to depend on the amino acid sequence, as in protein folding. Following polypeptide self-assembly into multilayer films, Cys residues were disulfide-crosslinked under mild oxidizing conditions. The stability of the crosslinked films at acidic pH has been found to depend on the number of Cys residues per peptide for a given crosslinking procedure. Crosslinked and non-crosslinked films have been analysed by ultraviolet spectroscopy (UVS), ellipsometry, and atomic force microscopy (AFM) to characterize film assembly, surface morphology, and disassembly. A selective etching model of the disassembly process at acidic pH is proposed on the basis of the experimental data. In this model, regions of film in which the disulfide bond density is low are etched at a higher rate than regions where the density is high. M Supplementary data files are available from stacks.iop.org/Nano/17/5726 (Some figures in this article are in colour only in the electronic version)
منابع مشابه
Tunable drug loading and release from polypeptide multilayer nanofilms
Polypeptide multilayer nanofilms were prepared using electrostatic layer-by-layer self-assembly nanotechnology. Small charged drug molecules (eg, cefazolin, gentamicin, and methylene blue) were loaded in polypeptide multilayer nanofilms. Their loading and release were found to be pH-dependent and could also be controlled by changing the number of film layers and drug incubation time, and applyi...
متن کاملNanoscale biomimetics: fabrication and optimization of stability of peptide-based thin films.
The method of thin film preparation known as layer-by-layer assembly is of growing interest for current and envisioned developments in bionanotechnology. Here, cysteine-containing 32mer peptides have been designed, synthesized, purified, and used to prepare polypeptide films. A range of methods-quartz crystal microbalance, Fourier transform infrared spectroscopy, circular dichroism spectroscopy...
متن کاملCefazolin embedded biodegradable polypeptide nanofilms promising for infection prevention: a preliminary study on cell responses.
Implant-associated infection is a serious complication in orthopedic surgery, and endowing implant surfaces with antibacterial properties could be one of the most promising approaches for preventing such infection. In this study, we developed cefazolin loaded biodegradable polypeptide multilayer nanofilms on orthopedic implants. We found that the amount of cefazolin released could be tuned. A h...
متن کاملRecombinant Production of a Novel Fusion Protein: Listeriolysin O Fragment Fused to S1 Subunit Of Pertussis Toxin
Background: Some resources have suggested that genetically inactivated pertussis toxoid (PTs) bear a more protective effect than chemically inactivated products. This study aimed to produce new version of PT, by cloning an inactive pertussis toxin S1 subunit (PTS1) in a fusion form with N-terminal half of the listeriolysin O (LLO) pore-forming toxin. Methods: Deposited pdb structure file of the...
متن کاملStructural stability of polypeptide nanofilms under extreme conditions.
Self-assembly of designed peptides is a promising area of biomaterials research and development. Here, polypeptide nanofilms have been prepared by electrostatic layer-by-layer self-assembly (LBL) of cysteine (Cys)-containing 32mers designed to be oppositely charged at neutral pH, and structural stability of the films has been probed by subjecting them to various extreme physical and chemical co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006